ttHH proporsal via bb au audecay mode

Yang Tianyi

Why ttHH

Cross-section w.r.t CME

Cross-section w.r.t *HHH* **strength**

- *ttHH* is the **third leading** process of HH production, becoming the second leading in FCC-hh or SPPC.
- *ttHH* has **low interference**; ggF and VBF have destructive interference.

Ongoing CMS *ttHH* groups

- HIG-24-016
 - Notes: AN -2022/122
 - Channel: $ttHH + HH \rightarrow b\overline{b}b\overline{b}$
 - Contact person: aurore.savoy.navarro@cern.ch (SACLAY, France)
- HIG-23-004
 - Notes: AN-2022/104
 - Channel: $ttHH + H \rightarrow \gamma\gamma + H \rightarrow b\overline{b}/WW/\tau\tau$,
 - Contact person: angelo.giacomo.zecchinelli@cern.ch (Boston, US)

All possible Higgs decay modes

- The 125 GeV Higgs BR theoretical computation*:
 - $H \rightarrow b\overline{b}$: 58.24%
 - $H \rightarrow \gamma \gamma$: 0.227%
 - $H \rightarrow WW$: 21.37%
 - $H \rightarrow ZZ$: 2.619%
 - $H \rightarrow \tau \tau$: 6.272%
- The possible channel to consider would be:
 - $HH \rightarrow b\overline{b}b\overline{b}$
 - $HH \rightarrow b\overline{b} + \gamma\gamma/WW/ZZ/\tau\tau$
- $t\bar{t}$ could decay hadronically, single lepton (SL) and double leptons (DL).

Branching ratios

Branching Ratio (BR)	OL	SL	DL	
$HH ightarrow b\overline{b}b\overline{b}$	15.41%	9.76%	1.54%	France Group
$HH ightarrow b\overline{b} + au au$, 1p+lep	1.096%	0.694%	0.110%	
$HH ightarrow b\overline{b} + au au$, 1p+1p	0.730%	0.462%	0.073%	
$HH \rightarrow b\overline{b} + WW$, leplep	0.515%	0.326%	0.052%	
$HH \rightarrow b\overline{b} + WW$, lephad	3.254%	2.060%	0.326%	Sungbeom's study
$HH \rightarrow b\overline{b} + ZZ$, qqll	0.130%	0.083%	0.013%	
$HH \rightarrow b\overline{b} + ZZ$, 4l	0.00628%	0.00397%	0.00063%	
$HH \rightarrow b\overline{b} + \gamma\gamma$	0.120%	0.076%	0.012%	Boston Group

XS	Run2	Run3	HL-LHC
\sqrt{s} / TeV	13	13.6	14
fb	0.764	0.87	0.947

- Assuming 300 fb⁻¹, 260 ttHH events expected without acceptance in Run3.
- <0.38% gets less than one yield expected.
- ZZ multilepton final state is too small.
- WW and au au are possible choices with acceptable BR remaining.

Hints from ggF study (Run 2 published)

- $HH \rightarrow b\bar{b}\gamma\gamma$, ggF+VBF, **HIG-19-018**
 - Excluding **7.7** times SM prediction ggF+VBF XS+BR (5.2 expected).
 - JHEP03(2021)257
- $HH \rightarrow b\bar{b}ZZ(4l)$, ggF, **HIG-20-004**
 - Excluding **32.4** times SM prediction ggF signal strength (39.6 expected).
 - JHEP06(2023)130
- $HH \rightarrow b\bar{b}b\bar{b}$, ggF+VBF, **HIG-20-005**
 - Excluding **3.9** times SM prediction ggF+VBF XS (7.8 expected).
 - *PhysRevLett*.129.081802
- $HH \rightarrow b\bar{b}\tau\tau$, ggF+VBF, **HIG-20-010**
 - Excluding **3.3** times SM prediction ggF+VBF XS (5.2 expected).
 - Physics Letters B 842 (2023) 137531
- $HH \rightarrow WWWW/WW\tau\tau/\tau\tau\tau\tau$, multi-leptons, ggF+VBF, **HIG-21-002**
 - Excluding 21.3 times SM prediction ggF+VBF XS (19.4 expectedd)
 - JHEP07(2023)095
- $HH \rightarrow b\bar{b}WW$, >1 lep, ggF+VBF, **HIG-21-005**
 - Excluding 14 times SM prediction of ggF+VBF XS (18 expected)
 - JHEP07(2024)293

Is $bb\tau\tau$ a good channel?

- Though ttHH is different from ggF, we still get $H \rightarrow VV$ has low excluding power.
- The bb au au channel in ggF looks promising.
- $\tau\tau$ decay channel limits:
 - lep-lep decay: only possible with different flavour ($e\mu$), with heavy $t\overline{t}$ background (not suitable with ttHH), with low acceptance and too many $\nu (\geq 4)$.
 - 3-prong: difficulty in a_1 reconstruction, its variables may have low sensitivity.
 - May need to start with hadhad and lephad with 1-prong.

Is $bb\tau\tau$ a good channel?

- Advantage of $bb\tau\tau$:
 - τ_{had} has light flavour final states. In principle separatable from other final state particles, i.e. $t\bar{t}$ and $H \rightarrow b\bar{b}$?
 - Though difficult to contribute to multi-lepton, it is fine with 1 lepton finalstate.

TAU-16-003; HIG-20-011

Backgrounds for $HH \rightarrow bb\tau\tau$

- Decay mode: lep-had + had-had
- Signal:
 - ggF HH @NLO using POWHEG v2.0
 - VBF HH @LO using MG5_aMC@NLO
- Backgrounds:
 - $Z/\gamma^* \rightarrow ll$ + jets; W + jets, dominant for had-had
 - $t, H, t\bar{t}$ + jets, dominant for lep-had
 - Diboson & triboson
 - $t\bar{t}V, t\bar{t}VV$

Event categorization for $HH \rightarrow bb\tau\tau$

- VBF-tagged:
 - $m_{jj} > 500 \text{ GeV } \& \Delta \eta_{jj} > 3$
 - Signal subclasses: classVBF, classGGF,
 - Backgrounds subclasses: classttH, classTT, classDY
- Boosted:
 - Not VBF-tagged & $\Delta R(b, b) < 0.8$
 - Two AK4 jets merged to AK8 jet, $m_{AK8} > 30~{\rm GeV}, \Delta R(b,b) < 0.4$ passing loose b-tagging
- Resolved:
 - Not meet boosted.
 - B-tag multiplicity classification: res1b, res2b
- In each of the region, DNN algorithm is used for discriminant between *HH* signal and background.
- *ttHH* study would not need VBF-tagging, but need more b-tagging.

Signal and background for $HH \rightarrow bb\tau\tau$

- DNN used for binned fit.
- Combining bins with similar sensitivity in DNN bins in each category, year, and τ decay mode.
- The upper limit of signal strength result is shown as follows:

Expected limit	2016	2017	2018	Combined
$\begin{split} \sigma_{\rm ggF+VBF}(\rm pp \rightarrow \rm HH) / \sigma_{\rm ggF+VBF}^{\rm SM} \\ \sigma_{\rm ggF+VBF}(\rm pp \rightarrow \rm HH) \ [fb] \\ \sigma_{\rm ggF+VBF}(\rm pp \rightarrow \rm HH \rightarrow \rm bb\tau\tau) \ [fb] \end{split}$	10.6 324 23.6	11.7 356 26.0	8.2 249 18.2	5.2 159 11.6
Observed limit	2016	2017	2018	Combined
$ \begin{array}{c} \sigma_{\rm ggF+VBF}(\rm pp \rightarrow \rm HH) / \sigma^{\rm SM}_{\rm ggF+VBF} \\ \sigma_{\rm ggF+VBF}(\rm pp \rightarrow \rm HH) \ [fb] \\ \sigma_{\rm ggF+VBF}(\rm pp \rightarrow \rm HH \rightarrow \rm bb\tau\tau) \ [fb] \end{array} $	8.9 272 19.6	9.5 291 21.2	5.5 169 12.4	3.3 102 7.5

Dominant background in *ttH*

Process	$1\ell + 1\tau_h$	$0\ell+2\tau_h$
tīH	183 ± 41	24.4 ± 6.0
tH	65 ± 46	16 ± 12
$t\bar{t}Z + t\bar{t}\gamma^*$	203 ± 24	27.1 ± 3.8
$t\bar{t}W + t\bar{t}WW$	254 ± 34	3.8 ± 0.5
WZ	198 ± 37	42.5 ± 8.7
ZZ	98 ± 13	34.2 ± 4.8
DY	4480 ± 460	1430.0 ± 220
tī+jets	41900 ± 1900	861 ± 98
Misidentified leptons	25300 ± 1900	3790 ± 220
Rare backgrounds	1930 ± 420	60 ± 14
Conversion	_	_
$ggH + qqH + VH + t\bar{t}VH$	38.5 ± 3.6	26.7 ± 3.6
Total expected background	73550 ± 610	6290 ± 130
Data	73736	6310

- Full Run 2 ttH with multilepton (and τ_h) decay study.
- In ttH channel with $t\overline{t}$, also the $Z \rightarrow ll$ and $t\overline{t}$ +jets are dominant backgrounds.
- $\tau_h \tau_h$ channel might suppress the $t\overline{t}$ background, in comparison to $HH \rightarrow b\overline{b}b\overline{b}$ channel.

ttHH pre-study

- We may have some feasibility pre-study for *ttHH* channel.
- If we may try $ttHH + bb\tau\tau$, we can have:
 - Generate some samples for $ttHH + bb\tau\tau$ and Drill-Yan with jets, $t\bar{t}$ samples might be shared between multi-lepton decay study and $bb\tau\tau$ study.
 - Have some discussion on the pre-selection and event categorization for this channel based on the first observation of samples.
 - Test the reconstruction and identification of $\tau_h \tau_h$ performance with the presence of additional $t\bar{t}$.
 - Valid the dominant backgrounds and consider discriminant for $\tau_{e/\mu}\tau_h$ and $\tau_h\tau_h$ seperately.

Possibility to collaborate with France group

- On Wednesday, I had a discussion with Sungbeom about the possibility to collaborate with the France group.
- Though *ttHH* might not have strong boosted topology, the jet merging does exist, maybe also between jets from Higgs and top.
- Sungbeom noticed that in their nanoAOD code, the fat jet was turned off. We might turn on the fat jet to see if there is anything interesting.
- This operation might also be applied to different decay modes.

