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Task overview
• This study aims at train an AutoDQM program for the GEM detector anomaly 

detection.
• The tool need to observe the offline GEM detector monitoring elements, using a 

trained auto encoder to reconstruct the occupancy image, and via comparison to 
the original occupancy image reporting the anomaly.
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Review of AutoDQM in CSC
https://cds.cern.ch/record/2916189/files/DP2024_095.pdf

https://github.com/Ma128-

bit/ML4DQM

• This idea comes from the CSC AutoDQM project 
https://cds.cern.ch/record/2916189/files/DP2024_095.pdf

• The GEM AutoDQM task starts from the CSC code https://github.com/Ma128-
bit/ML4DQM.

• The CSC data processing of stacking the lumi sections to receive enough 
occupancy, and smear the images in 𝜙 direction are also referred to.
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Dataset for GEM AutoDQM
• Using the Run2025C monitoring elements dataset
• ME of interests:

• GEM/Digis/occ_GE11-M-L1

• GEM/Digis/occ_GE11-M-L2

• GEM/Digis/occ_GE11-P-L1

• GEM/Digis/occ_GE11-P-L2

• Downloaded from /StreamExpress/Run2025C-Express-v1/DQMIO on dial.
• Run2025C selection

• Starting from Run 392174.
• Currently the study uses Run number up to 392542 (will increase as 

accumulating on dial).
• Require Collision25 run without GEM standby/bad/empty.

• The demonstrated train in these slides based on GEM/Digis/occ_GE11-P-L1.
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Image converting 
• The initial occupancy is recorded in 24*36 histograms, 24 for VFATs 

in a chamber, 36 for 36 chambers.
• Converting to 160*160 pixels image for x and y both in [-280, 280] cm 

ranges.
• Assigning the pixels with VFAT-wise occupancy mean value. 
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Entries and instataneous luminosity in lumi sections

• Mean lumi = (init lumi+end lumi)/2
• The total entries in one lumi section 

over the mean lumi in 1033cm−2s−1

should be around a constant.
• It has median around 7000 and 

most lumi sections around 7000.
• The lumi-sections with too low 

mean lumi (<0.1) is exclude.
• The lumi sections can be merged to 

get more stable entries per lumi.

6



7

Lumi section merging

• Lumi sections stacked into superLS up to ∑mean lumi = 20,30,150 1033cm−2s−1 .
• The higher merging, the superLS has more concentrated entries per lumi. This reduce the difficulties in 

training due to changed.
• In this study, ∑mean lumi = 150 1033cm−2s−1 is tested to be a suitable value for training.



Lumi section merging
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• Entries per lumi in each 
chamber varies.

• Merge lumi sections will 
also decrease the range 
for each chamber, and 
make the variation more 
clear for the model to 
learn.

• Again, merge up to 
∑mean lumi = 150
1033cm−2s−1 in this 
study can have a clear 
enough variation.

• The relative relation 
of adjacent 
chambers would 
carry information 
need for image reco.

• The ratio of a 
chamber’s entries to 
its previous 
chamber’s with 30 
and 150 mean lumi
sum is demonstrated.



Dataset spliting
• The data are separated based on its anomaly regions.
• The rare anomaly (<10%) are excluded from the dataset.
• The chamber which is off with >10% rate is kept for training, labeling as large off 

datasets.
• Both images with only common region off and with large ratio off are split into train 

and validation dataset with 85:15 ratio.



Auto encoder structure
• Input dimension [batch_size=32, channel=1, height=160, width=160]
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Auto encoder structure
• Encoder

• Initial feature extraction: Conv2d layer with kernel_size=3, activation=ReLU, 
32 channels.

• 3 Encoding blocks: 
• 3 stacked residue connection blocks with 2 Conv2d layers
• Down sampling and doubled features residue block with 3 Conv2d layers

• Compress latent space to 128-dimensional bottleneck
• Decoder

• Linear layer upsampling to 51200-dimensional linear features.
• 3 Decoding blocks:

• 3 stacked residue connection blocks with 2 ConvTranspose2d layers
• Up sampling and reduce features residue block with 3 ConvTranspose2d 

layers.
• Merge features using activation=ReLU.
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Anomaly masking
• The input figures contains anomaly regions, in such region, the auto-encoder 

should not learn the corresponding features.
• There are regions not considered as anomaly but mostly 0, should learn

• Outside the detector
• Always fail regions 
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Anomaly masking
• The example of one image mask creation.

• The not almost fail region is an anomaly.
• The anomaly feature should be excluded from learning.
• Mask created combine the image input and mask exclusion.
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Training performance
• L1 loss in validation dataset decrease to saturation with epochs.
• The latent space visualization using TSNE method.

• Good identification of anomaly for the excluded batches.
• Large off batches chamber 11 and chamber 16 also separated.
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Good image reconstruction
• The model is trained to well-reconstructing the occupancy without anomaly.
• The relative difference is characterized by L1 norm loss over the mean plot for 

LSs where the region is on rescaled to the image normalization.
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Input occ Reco occ Relative difference

diff =
|reco plot − input plot|

mean plot(region occ>0)×
LS total entry

mean total entry



Anomaly detection
• For the input with anomaly, the reconstructed plot will not have the corresponding 

anomaly. The auto encoder learnt to reconstruct the chamber from good input.
• The anomaly can be detected with high light stripes on the relative difference plot.
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Anomaly mis-detection
• For the region that is usually (>90%) off in the input, the model would tends to learn 

the values shall be 0.
• Then for the rare case it works, this would be inversely identified as an anomaly. 

This seems to be a common feature for auto-encoder. 
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Summary
• These slides show a GEM AutoDQM training using part of Run2025C monitoring 

element dataset for GEM/Digis/occ_GE11-P-L1.
• The lumi sections are merged to reduce the random variations in the chamber 

occupancy to enhance the training.
• The trained auto encoder has a good reconstruction for most of the good 

chambers and identify the anomaly chambers well.
• The issue that on a commonly off region, a rare lumi section that has the region 

on, the auto encoder would mis-report the anomaly.
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