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Task overview

* This study aims at train an AutoDQM program for the GEM detector anomaly
detection.

* The tool need to observe the offline GEM detector monitoring elements, using a
trained auto encoder to reconstruct the occupancy image, and via comparison to
the original occupancy image reporting the anomaly.
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Review of AutoDQM in CSC

* Thisidea comes from the CSC AutoDQM project
https://cds.cern.ch/record/2916189/files/DP2024_095.pdf

* The GEM AutoDQM task starts from the CSC code https://github.com/Ma128-
bit/MLADQM.

* The CSC data processing of stacking the lumi sections to receive enough
occupancy, and smear the images in ¢ direction are also referred to.
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Dataset for GEM AutoDQM

* Using the Run2025C monitoring elements dataset

* ME of interests:
* GEM/Digis/occ GE1l1l-M-L1
* GEM/Digis/occ_GE11-M-L2
* GEM/Digis/occ _GE11-P-L1
* GEM/Digis/occ_GE11l-P-L2
* Downloaded from /StreamExpress/Run2025C-Express-v1/DQMIO on dial.

* Run2025C selection
e Starting from Run 392174.

* Currently the study uses Run number up to 392542 (will increase as
accumulating on dial).

* Require Collision25 run without GEM standby/bad/empty.
 The demonstrated train in these slides based on GEM/Digis/occ_GE11-P-L1.



Image converting

* The initial occupancy is recorded in 24*36 histograms, 24 for VFATs .‘-,.
in a chamber, 36 for 36 chambers.

* Converting to 160*160 pixels image for x and y both in [-280, 280] cm .
ranges.

* Assigning the pixels with VFAT-wise occupancy mean value.
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Entries and instataneous luminosity in lumi sections
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* Mean lumi = (init lumi+end lumi)/2

* The total entries in one lumi section
over the mean lumiin 1033cm—2%s™1

should be around a constant.

* |t has median around 7000 and
most lumi sections around 7000.

e The lumi-sections with too low
mean lumi (<0.1) is exclude.

* The lumi sections can be merged to
get more stable entries per lumi.



Entries per Lumi

Lumi section merging

Entries per Lumi vs. Lumi
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Lumi sections stacked into superLS up to Y¥mean lumi = 20,30,150 1033cm™2s
The higher merging, the superLS has more concentrated entries per lumi. This reduce the difficulties in
training due to changed.

In this study, ¥ mean lumi = 150 1033cm™

Mean Lumi (103* cm—3s—%)

2.1

s~ is tested to be a suitable value for training.
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entries per lumi / superLS
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The relative relation
of adjacent
chambers would
carry information
need for image reco.
The ratio of a
chamber’s entries to
its previous
chamber’s with 30
and 150 mean lumi
sum is demonstrated.



Dataset spliting

* The data are separated based on its anomaly regions.
* The rare anomaly (<10%) are excluded from the dataset.
* The chamber which is off with >10% rate is kept for training, labeling as large off

datasets.

* Both images with only common region off and with large ratio off are split into train
and validation dataset with 85:15 ratio.



Auto encoder structure

* Input dimension [batch_size=32, channel=1, height=160, width=160]

Residue-connected

downsample
Convolution Max pool convolution blocks

: " First
Input image Initial Features Latent

[32,1,160,160] [32,32,160,160]

downsample

[32,32,80,80] [32,128,20,20]

Masked L1 loss Image mask Residue-connected
[32,1,160,160] upsample Linear
trans-convolution upsample

blocks

[32,1,160,160]

Reconstructed

Linear features Bottle neck

plots
[32,1,160,160]

[32,51200] [32,128,1]
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Auto encoder structure

* Encoder

* |nitial feature extraction: Conv2d layer with kernel_size=3, activation=RelLU,
32 channels.

* 3 Encoding blocks:

* 3 stacked residue connection blocks with 2 Conv2d layers

* Down sampling and doubled features residue block with 3 Conv2d layers
« Compress latent space to 128-dimensional bottleneck

* Decoder
* Linear layer upsampling to 51200-dimensional linear features.
* 3 Decoding blocks:
* 3 stacked residue connection blocks with 2 ConvTranspose2d layers

* Up sampling and reduce features residue block with 3 ConvTranspose2d
layers.

* Merge features using activation=RelLU.
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Anomaly masking

* The input figures contains anomaly regions, in such region, the auto-encoder
should not learn the corresponding features.

* There are regions not considered as anomaly but mostly 0, should learn
* Outside the detector
* Always fail regions
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Anomaly masking

* The example of one image mask creation.
* The not almost fail region is an anomaly.

* The anomaly feature should be excluded from learning.

* Mask created combine the image input and mask exclusion.
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Training performance

* L1 lossin validation dataset decrease to saturation with epochs.

* The latent space visualization using TSNE method.
* Good identification of anomaly for the excluded batches.

* Large off batches chamber 11 and chamber 16 also separated.
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Good image reconstruction

* The modelis trained to well-reconstructing the occupancy without anomaly.

* The relative difference is characterized by L1 norm loss over the mean plot for
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Anomaly detection

* For the input with anomaly, the reconstructed plot will not have the corresponding
anomaly. The auto encoder learnt to reconstruct the chamber from good input.

* The anomaly can be detected with high light stripes on the relative difference plot.

- ‘;rll oo
]
]
B il
|
|
L )
"
4 4
»
4h
g L
0 2ID 4ID GID BID l[I)D léD lﬂ'll-D

Input occ

- 103

- 102

101

100

1071

occ entries

140

120 A

100 +

80 +

60

40 -

20 4

0

- | N
o :":1! ~
. el ' 4
. -
-1 e
B B
L = . .,
b 4
] | TR g
O
0 EID 4ID 6ID BID l[l){] 12I{] lﬂllﬂ

Reco occ

_ 103

- 102

101

10"

101

occ entries

140 -

120 -

100 ~

80 A

60 A

40 -

20 A

0

0

20

40 60 80 100 120 140

Relative difference

16

N w
w o

N
wn o

occ entries

e
o

0.5

0.0



Anomaly mis-detection

* Forthe region that is usually (>90%) off in the input, the model would tends to learn
the values shall be 0.

* Then for the rare case it works, this would be inversely identified as an anomaly.
This seems to be a common feature for auto-encoder.
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Summary
* These slides show a GEM AutoDQM training using part of Run2025C monitoring
element dataset for GEM/Digis/occ_GE11-P-L1.

* The lumi sections are merged to reduce the random variations in the chamber
occupancy to enhance the training.

* The trained auto encoder has a good reconstruction for most of the good
chambers and identify the anomaly chambers well.

* The issue that on a commonly off region, a rare lumi section that has the region
on, the auto encoder would mis-report the anomaly.
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