## Data-MC discrepancy study

Yang Tianyi

### Datasets

- Run 2022C-G Muon
  - Golden json luminosity 5.0104, 2.9700, 5.8070, 17.7819, 3.0828 fb<sup>-1</sup> (34.7 fb<sup>-1</sup> in total)
- Run 2023C-D Muon0 & Muon1
  - Golden json luminosity: 17.794, 9.451  $fb^{-1}$  (27.2  $fb^{-1}$  in total)
- Run 2024C-I Muon0 & Muon1
  - Golden json luminosity: 7.24, 7.96, 11.32, 27.76, 37.77, 5.44, 11.47 fb<sup>-1</sup> (109 fb<sup>-1</sup> in total)
- Run 2022 and Run 2023 with corresponding condition MC samples downloaded for direct comparison:  $61.9\ fb^{-1}$
- From Run 2022 to Run 2024 all data in era for physics analysis:  $170.9\ fb^{-1}$

### Data trigger path and filter

- Trigger menu
  - Single muon trigger HLT\_IsoMu{20|24}{\_eta2p1} HLT\_IsoMu27 HLT\_Mu50
  - Dimuon trigger HLT\_Mu{17|19}\_TrkIsoVVL\_Mu{8|9}\_TrkIsoVVL\_DZ\_Mass{3p8|8}
  - Trimuon triggers HLT\_TripleMu\_5\_3\_3\_Mass3p8\_DZ HLT\_TripleMu\_10\_5\_5\_DZ HLT\_TripleMu\_12\_10\_5
- MET noise filter:
  - Flag\_goodVertices, Flag\_globalSuperTightHalo2016Filter, Flag\_EcalDeadCellTriggerPrimitiveFilter, Flag\_BadPFMuonFilter, Flag\_eeBadScFilter, Flag\_BadPFMuonDzFilter, Flag\_hfNoisyHitsFilter

### MC background samples

- Dominant Drell-Yan global background:
  - DYto2L-4Jets\_MLL-50\_TuneCP5\_13p6TeV\_madgraphMLM-pythia8/NANOAODSIM/
  - Cross-section (NNLO value): 6345.99 pb
- Other important backgrounds:
  - W+jets, DY with photons.
  - $t\bar{t}$  DL/SL
  - Diboson (*WW2l2v*, *WZ2l2q*, *ZZ2l2v*, *ZZ2l2q*, *WZ3l*, *ZZ4l*), triboson
  - tttt
  - $t\bar{t}V(V)$
  - Higgs:  $t\bar{t}H$ ,  $t\bar{t}VH$ , tH
- Note that in Run3Summer22NanoAODv12, the TTWZ sample is missing.
- The Run2024 corresponding MC sample not finish downloaded yet, currently with rescale the MC of Run2022 and Run2023 by  $170.9~fb^{-1}/\,61.9~fb^{-1}$ =2.76 for Full data comparison.

### **Object selections**

- Muon  $p_T$  need to take Rochester corrections
- Run2024 does not have the Rochester correctionlib json released yet, thus Run2024 data use the original Muon  $p_T$  before correction.
- Muon selection
  - GoodMuon25:  $|\eta| < 2.4$ , tight ID, tight Iso,  $p_T > 25 \text{ GeV}$
  - GoodMuon15:  $|\eta| < 2.4$ , tight ID, tight Iso,  $p_T > 15 \text{ GeV}$
  - Tight isolation: Muon\_pfRelIso04\_all<0.15
- Dimuon preselection
  - Leading Muon fulfill  $p_T > 25$  GeV condition
  - Other Muons fulfill  $p_T > 15 \text{ GeV}$  condition
  - nGoodMuon\_15 > 1 && nGoodMuon\_25 > 0

### MC corrections

- Pile-up correction
  - From <a href="https://gitlab.cern.ch/cms-nanoAOD/jsonpog-integration.git">https://gitlab.cern.ch/cms-nanoAOD/jsonpog-integration.git</a>
  - Applying based on truth interactions
  - Adding additional weights
- Muon scale corrections
  - From <a href="https://gitlab.cern.ch/cms-nanoAOD/jsonpog-integration.git">https://gitlab.cern.ch/cms-nanoAOD/jsonpog-integration.git</a>
  - Applying for the leading and subleading Muon
  - Adding additional scaling factors
- Drell-Yan Z  $p_T$  correction
  - From <a href="https://gitlab.cern.ch/cms-higgs-leprare/hleprare.git">https://gitlab.cern.ch/cms-higgs-leprare/hleprare.git</a>
  - Based on the truth Z boson  $p_T$  to fix the Muon momentum
  - Adding additional weights

### Cutflow table

|                | S0: global CR |           |          |          |           |            |         |  |  |  |  |  |
|----------------|---------------|-----------|----------|----------|-----------|------------|---------|--|--|--|--|--|
| MC campaign    | 22PreEE       |           | 22PostEE |          | 23PreBPix | 23PostBPix |         |  |  |  |  |  |
| Drell-Yan      |               | 5514746.6 |          |          | 14627220  | 7355623    |         |  |  |  |  |  |
| tī             |               | 52990.9   |          |          | 121917.1  | 64944.2    |         |  |  |  |  |  |
| tV             |               | 5451.3    |          |          | 12464.8   | 6587.1     |         |  |  |  |  |  |
| $t\bar{t}V(V)$ |               | 269.11    |          |          | 616.6     | 326.1      |         |  |  |  |  |  |
| Higgs          |               | 112.91    |          |          | 260.69    | 137.71     |         |  |  |  |  |  |
| W+jets         |               | 2000.4    |          |          | 5824.6    | 2937.7     |         |  |  |  |  |  |
| VV             | 18630.5       |           |          |          | 42865.6   | 22711.21   |         |  |  |  |  |  |
| tīttī          | 4             |           |          |          | 9.16      | 4.8        |         |  |  |  |  |  |
| QCD            | 141505        |           | 406849   |          |           | 353025     | 184440  |  |  |  |  |  |
| Era            | 2022C         | 2022D     | 2022E    | 2022F    | 2022G     | 2023C      | 2023D   |  |  |  |  |  |
| data           | 3334682       | 2203560   | 4412469  | 12549031 | 2189719   | 14043412   | 7639872 |  |  |  |  |  |
| Data/MC        |               | 96.6%     | 103.4%   |          |           | 92.6%      | 100%    |  |  |  |  |  |

### Leading muon $p_T$

#### Run2022+Run2023



Run2022+Run2023+Run2024

• Good agreement with the Drell-Yan  $Z p_T$  corrections applied.

### Subleading muon $p_T$

#### Run2022+Run2023



• Good agreement with the Drell-Yan  $Z p_T$  corrections applied.

#### Run2022+Run2023+Run2024

### Di-Muon variables $\eta_{\mu\mu}$

#### Run2022+Run2023



#### Run2022+Run2023+Run2024



• Have a peak in the central region.

### Trigger path checking 2022+2023

#### **Dimuon trigger**



Single muon trigger

- The dimuon trigger has a flat shape after  $Z p_T$  correction, but low normalization.
- The single muon trigger plot has the peak in the middle as seen in the complete trigger scheme plot.

### Trigger path checking 2022+2023+2024

#### **Dimuon trigger**



Single muon trigger

- The Run2024 data makes the normalization deviation smaller.
- The peak in the single muon trigger path remains.

### Di-Muon variables $\Delta \eta_{\mu\mu}$

#### Run2022+Run2023



#### Run2022+Run2023+Run2024



• The side regions have a gap between data and MC.

### Di-Muon variables $m_{\mu\mu}$

#### Run2022+Run2023



- The  $m_{\mu\mu}$  distribution has a low mass overshoot in both case.
- The Run2024 does not have Rochester correctionlib json from Muon POG shared, thus the mass peak shift shows again.

#### Run2022+Run2023+Run2024

### **Rochester correction**

 Rochester correction 2024 will be finished soon: https://indico.cern.ch/event/1550716/contributions/6535947/attachments/3

074969/5441414/pT\_calibration\_may25.pdf



- Normalized shape of  $m_{\mu\mu}$  comparison of 2023 and 2024 data.
- Pre-Rochester correction difference is small. The main difference of the previous slide with 2024 data is due to no Rochester correction for 2024 applied.

Large  $\Delta \eta_{\mu\mu}$  region check

 $\Delta \eta_{\mu\mu}$ >3.0



- Take the large  $\Delta \eta_{\mu\mu}$  cut where has the gap to dig.
- Good  $m_{\mu\mu}$  agreement.

 $m_{\mu\mu}$ 



Large  $\Delta \eta_{\mu\mu}$  region check



• Dimuon  $\eta$  also gets narrower range with the  $\Delta \eta_{\mu\mu}$  cut.

### Muon $\eta$

#### **Leading Muon**



- No central region Muon contributing to large  $\Delta \eta_{\mu\mu}$ .
- I did not take explicit cut on this.
- Data-MC agreement is also fine.

#### **Subleading Muon**



### Muon $p_T$

#### **Leading Muon**

•



#### **Subleading Muon**



### **GEM** database

- Solve all the redundance record and naming convention in oracle database.
- https://indico.cern.ch/event/1555397/

821 Update on ME0 QC records on GEM database https://cmsgemdb.web.cern.ch/cmsgemdb/prod/list\_me0parts.php: ..... -The redundance QC records for ME0 external frame, drift board, readout board has been removed. The run number attribute has been changed serveral times during the re-uploading to avoid failure due to uniqueness issue. As a result, the run number does not ever mean the batch number. The run number essentially does not have any meaning now. The batch and index of KR foil serial name has been unified into format of Bxx-xxxx. The multi registrations of the same foil element due to index digit are merged: ME0-GEM-KR-G3-B02-0042 remains. ME0-GEM-KR-G3-B02-42 record deleted. ME0-GEM-KR-G12-B03-0018 remains. ME0-GEM-KR-G12-B03-18 record deleted. ME0-GEM-KR-G12-B02-0017 remains and attempt times increase to 2. ME0-GEM-KR-G12-B02-17 record deleted. ME0-GEM-KR-G12-B02-0011 remains and attempt times increase to 2. ME0-GEM-KR-G12-B02-11 record deleted. Note that both tests failed. **O** 07/06/2025, 04:22 **L** Tianyi Yang

### **GEM AutoDQM**

- ME downloaded:
  - GEM/Digis/occ\_GE11-M-L1
  - GEM/Digis/occ\_GE11-M-L2
  - GEM/Digis/occ\_GE11-P-L1
  - GEM/Digis/occ\_GE11-P-L2
  - From /StreamExpress/Run2025C-Express-v1/DQMIO on dial.
- Run2025C selection
  - From Run 392174.
  - At the time I downloaded, Run number up to 392542.
  - Require Collision25 run without GEM standby/bad/empty.

### Different merging level test

Merge to 20

Merge to 30

Merge to 300



- Merge to 30 seems already reach a good level of occupancy.
- Entry per lumi similar to up to 300.

# Sample lumi section merging histogram low occupancy example



• Corresponding files in

/eos/user/t/tiyang/AutoDQM/data2025/lumi\_30\_data\_GEM\_Digis\_occ\_GE11-P-

- L1\_\_StreamExpress\_Run2025C-Express-v1\_DQMIO\_392174\_392542.parquet.npz
- Maybe should define a lower bound of entries per lumi to reject those superLS at 2000?

### Image view



 Corresponding files in /eos/user/t/tiyang/AutoDQM/data2025/lumi\_30\_GEM\_Digis\_occ\_GE11-P-L1\_\_StreamExpress\_Run2025C-Express-v1\_DQMIO\_392174\_392542.parquet.npz

### Sample lumi section merging ordinary case

Histogram



- Most superLS are with good occupancy and looks like this.
- The off regions are consistent behavior, but can have run-wise difference.

Image

### Performance using histogram or image

- Proposed overall loss =  $\sum_{pixel} (|\Delta_{occ}| * \overline{occ})$ 
  - The points outside the detector will not be counted due to 0 occupancy in mean plot.
  - Whatever the binning (160\*160 or 24\*36), the total occupancy in the image or histogram is the same.
  - Presented in relative difference in percentage.

### Comparison



- Comparison of histogram and image validation loss using the same dataset partition for training.
- The mean image training loss is 18.8%, histogram training loss is 19.3%.

### Backup

### Cutflow table

|                | S0: global                                                    |              |                                                                            |            |            |                                                                        |                                                                       |                                                                |  |
|----------------|---------------------------------------------------------------|--------------|----------------------------------------------------------------------------|------------|------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|--|
| MC campaign    | 22PreEE                                                       |              | 22PostEE                                                                   |            |            | 23PreBPix                                                              | 23PostBPix                                                            | DV2150+                                                        |  |
| Drell-Yan      | 540565                                                        | 4.2+109092.4 |                                                                            | 17459445.4 | +321795.7  | 14391153.0+236067.3                                                    | 7230418.4+125205.0                                                    | DY2L10-50                                                      |  |
| tī             | 50                                                            | 377.8+2613.1 |                                                                            | 148030     | ).2+9629.7 | 115171.1+6746.0                                                        | 61298.1+3646.1                                                        | $\int UL^{+}SL = tW^{-} + \bar{t}W^{+}$                        |  |
| tV             | 2659.2+                                                       | 2677.9+114.2 |                                                                            | 8014.3+799 | 90.0+347.1 | 6112.9+6091.8+260.1                                                    | 3235.6+3214.1+137.4                                                   | +TZQB                                                          |  |
| $t\bar{t}V(V)$ | 3.01+20.                                                      | 7+159.6+85.8 | 10.1+60.7+500.0+258.0                                                      |            |            | 13.6+48.9+363.0+191.1                                                  | 4.3+25.6+193.3+102.9                                                  | 50+ttZ50+ttW                                                   |  |
| Higgs          | 0.32+0.39+18.82+40.93<br>+33.85+18.6                          |              | 0+0+57.28+121.73+100.76+57.7<br>1                                          |            |            | 0.91+1.14+43.34+93.96<br>+78.29+43.05                                  | 0.24+0.30+23.4+49.92+41<br>.33+22.52                                  | TTWH+TTZH+ttHBB+<br>ttHnonBB+thq+thw                           |  |
| W+jets         | 2000.4                                                        |              | 4612.1                                                                     |            |            | 5824.6                                                                 | 2937.7                                                                |                                                                |  |
| VV(V)          | 5219.7+4320.4+4141+9<br>55.9+1087.9+2815.5+3<br>4.1+38.5+17.5 |              | 15598.7+12961.0+12376.5+291<br>2.1+3168.2+8529.8+105.6+119.<br>2+53.7+23.8 |            |            | 11986.5+9897.8+9535.0<br>+2205.6+2555.0+6461.3<br>+78.5+88.1+39.9+17.9 | 6356.9+5248.6+5069.8+1<br>159.2+1325.9+3431.1+41.<br>8+47.3+21.1+9.51 | WW2L+WZ2L+ZZ2L<br>2Q+ZZ2L2Nu+ZZ4L<br>+WZ3L+WWW+WW<br>7+W77+777 |  |
| tīttī          | 4.0                                                           |              | 12.2                                                                       |            |            | 9.16                                                                   | 4.8                                                                   | .8                                                             |  |
| QCD            | 141505                                                        |              | 406849                                                                     |            |            | 353025                                                                 | 184440                                                                |                                                                |  |
| Era            | 2022C                                                         | 2022D        | 2022E                                                                      | 2022F      | 2022G      | 2023C                                                                  | 2023D                                                                 |                                                                |  |
| data           | 3334682                                                       | 2203560      | 4412469                                                                    | 12549031   | 2189719    | 14043412                                                               | 7639872                                                               | 20                                                             |  |