

Search for $t\bar{t}HH$ production with the same-sign di-lepton final state at the HL-LHC

*Sungbeom Cho, Tae Jeong Kim, <u>Tianyi Yang</u>, Yeonsu Ryou Hanyang University

*Most work is done by Sungbeom Cho for the materials in this talk

Motivation

• In the **Standard Model (SM)** of particle physics, the Higgs boson has **self-couplings** not yet discovered.

- To discover the Higgs boson self-coupling is essential to fill the missing pieces of the SM.
- The upper limit for the triple Higgs boson self-coupling strength $\lambda_{HHH}/\lambda_{HHH,SM}$ combined the full Run 2 measurements is **3.4** (2.5 expected) from CMS* and **2.9** (2.4 expected) from ATLAS**.
- In this talk, the feasibility study of searching for the ttHH production at the High Luminosity LHC (HL-LHC) is presented.

^{*} *Nature* 607 (2022) 7917, 60-68

^{**} Phys.Rev.Lett. 133 (2024) 10, 101801

$t\bar{t}HH$ production channel

• The third leading HH production channel at the Large Hadron collider.

• Advantage of this channel: No destructive interference.

• The cross-section increases as the centre-of- $_{10^{-1}}$ mass energy as well.

Tree-level contribution with self-coupling for $t\bar{t}HH$ production

HH production at 14 TeV LHC at (N)LO in QCD M_H=125 GeV, MSTW2008 (N)LO pdf (68%cl) pp→ttHH pp→ZHH λ/λ_{SM} Tree-level contribution without self-coupling

^{*} Phys.Lett.B 732 (2014) 142-149

Challenges of $t\bar{t}HH$ channel

• The small cross-section is the main challenge of the measurement in this channel. In this study using NLO theoretical computation in the HL-LHC feasibility study*:

				PDF + α_s uncertainty	
tŦHH	9.48e-4	-13.5%	+3.9%	<u>±3.2%</u>	

Higgs boson mass $m_H=125~{
m GeV}$

Centre-of-mass beam collision energy $\sqrt{s} = 14 \text{ TeV}$

- To suppress most of the SM backgrounds at the LHC, the **Same-sign** dilepton region (SS2l) is of interest.
- Same-sign leptons can come from Higgs boson and top quark decay respectively

• e.g.
$$H \to W^+W^- \to qq l^- \bar{\nu}_l \& \bar{t} \to \bar{b}W^- \to \bar{b}l^- \bar{\nu}_l$$

^{*} CMS PAS FTR-21-010

$t\bar{t}HH$ channel feasibility study at the HL-LHC

• The CMS feasibility study of $t\bar{t}HH$ channel was carried in another decay mode published in CMS PAS FTR-21-010

- Both Higgs boson decay $H o b \bar{b}$, $t \bar{t}$ semi-leptonic decay.
- Centre-of-mass energy $\sqrt{s} = 14 \text{ TeV}$
- Integrated luminosity 3000 fb⁻¹
- The pseudorapidity coverage for the Muon system at the HL-LHC is increased to $|\eta| = 2.8$ with the ME0 detector to be installed.
- The expected upper limit for the $t\bar{t}HH$ signal strength is $3.14^{+1.27}_{-0.9}$ as a result of this feasibility study.

Samples

- In this study, the samples are generated by MadGraph5_aMC@NLO @14 TeV
 - $t\bar{t}HH$ decay modeled using MadSpin
 - Parton shower modeled using Pythia8
 - Fast simulation using Delphes with phase II CMS card with b-tagging changed.

The cross-section values are from generator computation except mentioned.

				•				
Process	σ [fb]	(QCD order)	Decay Channel	Branching Ratio				
	Signal							
$t\bar{t}HH$	0.948	(NLO) *	$t\bar{t}$ semi-leptonic (SL), $HH \to b\bar{b}WW$	0.107				
			Backgrounds					
$oxed{tar{t}bar{b}}$	1,549	(LO)	$t\bar{t}$ SL & di-leptonic (DL)	0.543				
$t ar{t} W$	631.1	(NLO)	$tar{t}$ SL & DL	0.543				
$t ar{t} H$	612	(NLO) *	$tar{t}$ SL & DL	0.543				
$-tar{t}bar{b}V$	27.36	(LO)	$tar{t}$ SL & DL	0.543				
$tar{t}tar{t}$	15.8	(NLO) **	inclusive	1.0				
$t \bar{t} b \bar{b} H$	15.6	(LO) ***	$tar{t}$ SL & DL	0.543				
$-tar{t}VV$	13.52	(LO)	$tar{t}$ SL & DL	0.543				
$t ar{t} Z H$	1.71	(NLO)	$tar{t}$ SL & DL	0.543				

^{*} CMS PAS FTR-21-010

^{**} CMS PAS FTR-18-031

Object and event selection

- Object selection:
 - Electrons: $p_T > 23$ GeV, $|\eta| < 3.0$, Isolation $I_{rel}^{PF} < 0.3$, identification efficiency 85%.
 - Muons: $p_T > 17$ GeV, $|\eta| < 2.8$, Isolation $I_{rel}^{PF} < 0.3$, identification efficiency 97%.
 - Jets: Anti- k_T $\Delta R=0.4$ jets, $p_T>30$ GeV, $|\eta|<3.0$
 - b-jets: $p_T > 30$ GeV, $|\eta| < 3.0$, b-tagging efficiency 85%.

• Missing transverse energy E_T^{Miss} : negative sum of particle-flow tracks, photons and

Selection

neutral hadrons*.

• Event selection:

- S1. Exactly 2 leptons (e/μ)
- S2. same-sign charge for leptons
- S3. $E_T^{Miss} > 30 \text{ GeV}$
- S4. At least 4 b-jets

Beleevion	50	O.	52	50	54
Description	None	$N_l = 2$	Same sign	$E_T^{Miss} > 30 \; GeV$	$N_b \ge 4$
${f t} \overline{f t} H H$	304	45	21	18	9
${ m tar t}{ m bar b}$	2,523,321	171,841	17,390	14,575	5,477
${ m t} {ar { m t}} { m W}$	1,028,062	$145,\!423$	50,204	44,676	3,136
${f tar t H}$	996,948	103,087	24,974	21,849	3,759
${ m tar tbar bV}$	22,569	4,263	831	738	193
${f t}{f t}{f t}{f ar t}$	47,400	6,446	2,206	2,056	1,160
${f tar tbar bH}$	25,412	2,585	627	568	291
${ m t} { m ar t} { m V} { m V}$	22,024	4,091	1,405	1,300	171
${ m tar{t}ZH}$	2,786	358	86	78	25
Acceptance (ttHH)	1.00	0.15	0.07	0.06	0.03
S/\sqrt{B}					0.075

S1

S2

S3

S4

^{*} Delphes 3, JHEP 02 (2014) 057

Higgs boson reconstruction

- The $H \to b \bar b$ decay Higgs boson is reconstructed using jet assignment deep neural network (DNN) for at least four b-jets events.
- The method has been used in the $t \bar{t} b \bar{b}$ measurement.*
- Matchable events: a Higgs boson has 2 b-jets as decay product at truth level.
- 6 combination of b-jets matching from 4 leading b-jets.
- Matching efficiency = $\frac{\text{Higgs boson correctly matched to the b-jets}}{\text{Total number of matchable events}}$ DNN input

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$p_{T,b_i}, \eta_{b_i}, \phi_{b_i}$
b-jet pair b_i , b_j	$\Delta R_{b_i,b_{2j}}$

- 88586 events for train, 37966 for validation, 13445 for test dataset.
- **94.7%** efficiency (13% for minimum- χ^2 fit) among matchable events.

Input dimension	18
Hidden layers	5
Activation	ReLU
Output activation	softmax
Output nodes	6
Dropout	0.1
batch size	1024

b-jet assignment

b_1	b_2	b_3	b_4
H	H		
H		H	
H			H
	H	H	
	H		H
		H	H
	H	H H H - H - H H	H H H H H H H H H H

^{*} CMS-TOP-22-009

Signal extraction DNN

• Events are assigned with 6 channel scores by DNN:

• $t\bar{t}HH$, $t\bar{t}H$, $t\bar{t}b\bar{b}$, $t\bar{t}t\bar{t}$, $t\bar{t}W$ and others.

• Events are categorized into the channel that their corresponding score is the largest score among 6 channel scores.

DNN structure

Input dimension	38
Hidden layers	5
Activation	ReLU
Output activation	softmax
Output nodes	6
Dropout	0.1
batch size	1024

• 190536 events for training, 47634 for validation, 14159 for test dataset.

Event categorization and fit

- Fit using combine tool
 with yield and maximum
 DNN score shapes in eac
 region simultaneously.
- Label others include $t\bar{t}b\bar{b}H$, $t\bar{t}b\bar{b}V$, $t\bar{t}ZH$ and $t\bar{t}VV$ processes.

Results

- Significance: 2.057
- Upper limit: 2.24

Summary

- Previous feasibility study for HL-LHC on $t\bar{t}HH$ has been done using $H\to b\bar{b}$, $t\bar{t}$ semi-leptonic decay.
- This study firstly investigate the SS2l region for the $t\bar{t}HH$ channel.
- DNN is used for the Higgs boson reconstruction (b-jet assignment) and signal extraction.
- The nominal upper limit of $t\bar{t}HH$ signal strength in this study is 2.24, with significance at 2.057.
- The iRPC covering up to $|\eta| = 2.4$ providing the precise time information and enhancing the muon trigger performance might increase the sensitivity.
- The Run 3 data analysis is ongoing adapting the strategy in this study.

backup

HH production channels at the LHC

NN structure for Higgs b-jet matching

Layer	Dimension	Activation	Normalization	Dropout	Trainable parameters
Input	18	-	batch	-	36
Dense	256	ReLU	batch	0.1	5376
Dense	256	ReLU	batch	0.1	66304
Dense	64	ReLU	batch	0.1	16576
Dense	32	ReLU	-	-	2080
Dense	6	softmax	-	-	198

Events for Higgs b-jet matching

- Actual number of events in each category.
 - 9574, 8957, 8720, 9505, 8527, 8427
- Up-sampling to 9574 events in each category.
 - 9574 events used for each category, 70% in train dataset (40211), remaining validation dataset.
 - 30439 events reserve for test dataset.

NN structure for signal extraction

Input variables

Description	Variables
Multiplicity	N_{b-jets},N_{jets}
Scalar momentum sum	H_T^{jets}
Transverse momentum	$p_T \text{ of } b_{1/2/3/4}, l_{1/2}$
Pseudorapidity	$\eta { m of} b_{1/2/3/4}, l_{1/2}, \Delta \eta_{bb}^{DNN}$
Azimuthal angle	$\phi ext{ of } b_{1/2/3/4}, l_{1/2} \ m_{bb}^{DNN}, m_{ll}$
Invariant mass	m_{bb}^{DNN},m_{ll}
Angular separation	$\Delta R_{l_1,l_2}, \Delta R_{l_i,b_j}, \min, \text{ avg, max of } \Delta R_{bb}, \Delta R_{bb}^{DNN}$
Centrality	$c_{jets} = H_T^{jets} / E_{jets}$

Layer details

Layer	Dimension	Activation	Normalization	Dropout	Trainable parameters
Input	38	-	batch	-	76
Dense	256	ReLU	batch	0.1	10496
Dense	256	ReLU	batch	0.1	66304
Dense	128	ReLU	batch	0.1	33152
Dense	128	ReLU	-	-	16512
Dense	6	softmax	-	-	774