Update on the $t\bar{t}HH$ data checking

Yang Tianyi

Full dataset

- Full Muon datasets downloaded already: /data2/common/NanoAOD/v12/data/
- Physical era with golden json:
 - 2022 C-G
 - 2023 C-D
 - 2024 C-I
- PDs used: 2022 Muon, 2023-2024 Muon0 + Muon1
- Total luminosity: 171 fb^{-1} .

Object selection

- Using the whole dimuon-triggered region: HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ_Mass3p8.
- Muon requires the tight & iso condition:
 - TightID
 - $I_{\Delta R=0.4} > 0.15$
- Muon p_T threshold of different values are tested.

Muon threshold verification

- 2lSS, 3l, 4l signal regions would decrease rapidly with respect to increased Muon p_T threshold.
- 2 2lSS lose a lot before at cut $p_T \ge 17$ GeV, 3l at 25, 4l at 35.
- 2lOS control region seems not much affected by the p_T threshold.

Backgrounds considered

DYGto2LG-1Jets_MLL-50_PTG-10to100_TuneCP5_13p6TeV_amcatnloFXFX-pythia8 ttHto2C_M-125_TuneCP5_13p6TeV_powheg-pythia8 DYto2L-2Jets_MLL-10to50_TuneCP5_13p6TeV_amcatnloFXFX-pythia8 DYto2L-2Jets_MLL-50_TuneCP5_13p6TeV_amcatnloFXFX-pythia8 GluGluToContinto2Zto2E2Mu_TuneCP5_13p6TeV_mcfm701-pythia8 GluGluToContinto2Zto2E2Tau_TuneCP5_13p6TeV_mcfm701-pythia8 GluGluToContinto2Zto2Mu2Tau_TuneCP5_13p6TeV_mcfm701-pythia8 GluGlutoContinto2Zto4E_TuneCP5_13p6TeV_mcfm-pythia8 QCD_PT-1000_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 QCD_PT-120to170_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 QCD_PT-15to20_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 QCD_PT-170to300_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 QCD_PT-20to30_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 DCD_PT-300to470_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 QCD_PT-470to600_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 CD_PT-50to80_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 QCD_PT-600to800_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 QCD_PT-800to1000_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 QCD_PT-80to120_MuEnrichedPt5_TuneCP5_13p6TeV_pythia8 TbarBtoLminusNuB-s-channel-4FS_TuneCP5_13p6TeV_amcatnlo-pythia8 TbarWplusto2L2Nu_TuneCP5_13p6TeV_powheg-pythia8 TbarWplustoLNu2Q_TuneCP5_13p6TeV_powheg-pythia8 TBbartoLplusNuBbar-s-channel-4FS_TuneCP5_13p6TeV_amcatnlo-pythia8 HQ_ctcvcp_HIncl_M-125_4FS_TuneCP5_13p6TeV_madgraph-pythia8 TTH_Hto2Z_4LFilter_M-125_TuneCP5_13p6TeV_powheg-jhugenv752-pythia8 ttHto2B_M-125_TuneCP5_13p6TeV_powheg-pythia8 TTHto2B_M-125_TuneCP5_13p6TeV_powheg-pythia8

TTHtoNon2B_M-125_TuneCP5_13p6TeV_powheg-pythia8 ttHtoZG_ZtoAll_M-125_TuneCP5_13p6TeV_powheg-pythia8 TTLL_MLL-4to50_TuneCP5_13p6TeV_amcatnlo-pythia8 TTto2L2Nu_TuneCP5_13p6TeV_powheg-pythia8 TTto4Q_TuneCP5_13p6TeV_powheg-pythia8 TTtoLNu2Q_TuneCP5_13p6TeV_powheg-pythia8 TTTT_TuneCP5_13p6TeV_amcatnlo-pythia8 TTWH_TuneCP5_13p6TeV_madgraph-pythia8 TTWW_TuneCP5_13p6TeV_madgraph-madspin-pythia8 TTWZ_TuneCP5_13p6TeV_madgraph-pythia8 TTZH_TuneCP5_13p6TeV_madgraph-pythia8 TTZZ_TuneCP5_13p6TeV_madgraph-madspin-pythia8 TWminusto2L2Nu_TuneCP5_13p6TeV_powheg-pythia8 TWminustoLNu2Q_TuneCP5_13p6TeV_powheg-pythia8 TZQB-Zto2L-4FS_MLL-30_TuneCP5_13p6TeV_amcatnlo-pythia8 WWto2L2Nu_TuneCP5_13p6TeV_powheg-pythia8 WWW_4F_TuneCP5_13p6TeV_amcatnlo-madspin-pythia8 WWZ_4F_TuneCP5_13p6TeV_amcatnlo-pythia8 WZto2L2Q_TuneCP5_13p6TeV_powheg-pythia8 WZto3LNu_TuneCP5_13p6TeV_powheg-pythia8 WZ_TuneCP5_13p6TeV_pythia8 WZZ_TuneCP5_13p6TeV_amcatnlo-pythia8 ZZto2L2Nu_TuneCP5_13p6TeV_powheg-pythia8 ZZto2L2Q_TuneCP5_13p6TeV_powheg-pythia8 ZZto4L_TuneCP5_13p6TeV_powheg-pythia8 ZZ_TuneCP5_13p6TeV_pythia8 ZZZ_TuneCP5_13p6TeV_amcatnlo-pythia8

"QCD 15 20 mu": 2960000.0, "QCD_20_30_mu": 2679000.0, "QCD_30_50_mu": 1465000.0, "QCD_50_80_mu": 409500.0, "QCD_80_120_mu": 96200.0, "QCD_120_170_mu": 22980.0, "QCD_170_300_mu": 7763.0, "QCD_300_470_mu": 699.1, "QCD_470_600_mu": 68.24, "QCD_600_800_mu": 21.37, "QCD 800 1000 mu": 3.913, "QCD_1000_mu": 1.323,

Cross-section at LO

5

- Newly added full p_T range of the muon-enriched QCD backgrounds for studying the Muon p_T threshold.
- Cross-section for this not very reliable, but provide an order, showing the importance of the low- p_T contribution.

MC cross-section uncertainties

- From AN2024_226:
 - Theoretical cross section. Uncertainties on the SM cross sections of background processes are applied, based on available theory uncertainties computed at NLO accuracy. Uncertainties of: 7%, 11%, 10%, 10%, and 10% are applied to tītZ [37], tZq [38], two and tri-boson processes [39, 40], and processes in association with a photon [41, 42], respectively. A 5% uncertainty is applied to the tīt [43] process while a 10% uncertainty is applied to the DY process [44] and the remaining processes in which a tīt pair plus addittionally particles is produced. Finally, an uncertainty of 20% is assigned to the WZ+b-jets background, to account for an increased uncertainty in the processes where b-jets are present (derived from the differential tītZ measurement [45]).
- The dominant contribution in the inclusive region should be the Drell-Yan crosssection ~10%.
- The QCD uncertainties are not directly given by a percentage value but requires data-driven estimation.

• The matching is good in 2lOS and 3l region.

Missing VVV contribution, which should contribute to the gap in 4l.

The 2lSS region has overshoot before $p_T \ge 30$ GeV.

In the other region, the Drell-Yan and di-boson contributions are important, which have known crosssection uncertainties. The dominant background in the whole 2ISS region is QCD, which lacks the modeling.

The 2lSS signal seems not decrease much with p_T threshold, but multi-Muon lose a lot. 7

- In the inclusive dimuon-triggered region, the data-MC matching is changing as the leading Muon p_T threshold.
- Deviation within the Drell-Yan cross-section
- If the change in the data-MC comparison with increasing threshold an issue?

□ttV(V)

1.5

tt

- In the inclusive dimuon-triggered region, the data-MC matching is changing as the p_T
- Deviation becomes larger at higher p_T threshold.

DY & W

- The mis-modeling in the low-p_T region is noticed. What is the source of it? This is the most important thing to investigate now.
- The low-p_T region has fewer well-modeled Drell-Yan background, but this does not look like QCD modeling uncertainty shall cover the 2 times data.

- Subleading Muon similarly has a low- p_T region modeling issue.
- Clearly the missing is already larger than the Drell-Yan cross-section uncertainty.
- We need to understand the source of the low- p_T Muon modeling to make good data-MC comparison.