

Status Report

Hanyang University High Energy Physics Laboratory

Sungbeom Cho

(sucho@cern.ch)

Status

2025 Induction courses of my interest.

https://indico.cern.ch/event/1467816/timetable/

MC Generation

4:00 PM → 4:25 PM Hands-on PPD/Physics Data MonteCarlo Validation

Speakers: Samadhan Kamble (Indian Institute of Technology Madras (IN)), Soumyadip Barman (Tata Institute of

H(bb) reconstruction in SS21

My personal opinion is, H(bb) itself only doesn't seem so nice..

Reason1. Already reported, resolution of H>bb is unclear enough.

Reason2. I see combinatorial problem with at least 3 jets.

Reason3. Matchable event ratio = below 10%.

ttHH

My suggestion is, inspect leptons more.

And to be honest, try generating central generation of ttHH (bbWW).

4:00 PM → 4:25 PM Hands-on PPD/Physics Data MonteCarlo Validation

Speakers: Samadhan Kamble (Indian Institute of Technology Madras (IN)), Soumyadip Barman (Tata Institute of

Induction-PdmV_So...

--> I can do this.

Back – up

Motivation of ML-DQM DC

In 2024, ~30fb of good for physics data comes from partially BAD runs certified by DC.

https://indico.cern.ch/event/1467816/timetable/

Motivations of ML-DQM DC

ML based DC is paradigm changing for the future.

- 1. Cope with larger data.
- 2. Reduce tedious human errors.
- 3. Closer inspection for data per lumi-section.
- 4. AE gives additional insights on detector performance.

Personal : Good starting point to engage in CMS workflow. Golden Json is what should understand.

Contribution? :

- No optimal official ML model yet. Lots of candidates, where we can also contribute.
- In CMS, CSC detector project is on going. --> I believe I can develop RPC model as well.

# Autentication	# Autentication Starting point : Create "rpc workspace"
<pre>creds = Credentials.from_creds_file()</pre>	<pre>creds = Credentials.from_creds_file()</pre>
# workspace definition	# workspace definition
<pre>dials = Dials(creds, workspace="csc")</pre>	<pre>dials = Dials(creds, workspace="rpc")</pre>

Workflow

Step 1. DIALS aggregate offline MEs into pandas format.
Step 2. ResNet AutoEncoder for anomaly detection. --> There is no optimized model yet!
Step 3. Create Golden Json.

https://github.com/Ma128-bit/17th-CMS-Induction-Course.git Hands on Tutorial

What is DIALS? : Data Inspector for Anomalous Lumi-Sections.

Python API, working on Jupiter.

Also it converts to pandas data frame easily, which is good for ML inputs.

cmsdials utilities: from cmsdials.auth.bearer import Credentials from cmsdials import Dials from cmsdials.filters import RunFilters, LumisectionFilters, MEFilters from cmsdials.filters import LumisectionHistogram2DFilters

Anomaly Detection

We want to figure out..

Normal Data vs Anomalous Data, like we do in Online DQM.

Anomaly Detection Concept.

Train with Normal Data == Learn Normal Latent Space.

Normal data will be reconstructed well from the Normal Latent Spa

Anomaly data will be poorly reconstructed from the Normal Latent Space. --> Big Loss.

*Loss is defined as "Reconstructed img – Input img difference"

