# First look at the Run 3 data for $t\bar{t}HH$ analysis

Hanyang University High Energy Physics Laboratory

Sungbeom Cho, Taejeong Kim, <u>Tianyi Yang</u>, Yeonsu Ryou





#### Introduction

- This study aims at searching for di-Higgs events and measuring the triple Higgs coupling in the  $t\bar{t}HH$  channel using CMS Run3 data.
- This study focuses on the **di-lepton** and **multi-lepton final states** to suppress Drell-Yan and multi-jet backgrounds.
- Currently, we are taking a first look at Run3 data and comparing data with background MC samples in the whole di-lepton and multi-lepton control region.
- Based on this, we are to determine the analysis strategy.

#### Run 3 dataset and luminosity



- From September 2022 until now, the Run 3 integrated luminosity has already become larger than Run 2.
- The Golden Json luminosity of 2022 and 2023 Runs is listed in the table below.
- The 2024 luminosity is under updating.

| Year                       |        |        | 2023   |         |        |        |        |
|----------------------------|--------|--------|--------|---------|--------|--------|--------|
| Era                        | С      | D      | E      | F       | G      | С      | D      |
| first run number           | 355794 | 357487 | 359022 | 360332  | 362350 | 367080 | 369803 |
| last run number            | 357486 | 359021 | 360331 | 362180  | 362760 | 369802 | 372415 |
| Golden Json Luminosity /fb | 5.0104 | 2.97   | 5.807  | 17.7819 | 3.0828 | 17.794 | 9.451  |
| Total                      |        |        | 27.    | 245     |        |        |        |

#### Data

- Checking begins with the di-muon region
  - **Muon0** and **Muon1** primary datasets contain **all** the single muon and double muon triggered events.
  - EGamma0/1 contain all the single and double electron-triggered events.
- Muon0 and Muon1 record different events in the same run and luminosity blocks.
- No double counting of events between Muon0 and Muon1.
- Using Run2023D era for the checking
  - Luminosity: **9.451 fb**<sup>-1</sup>

# MC samples

- Drell-Yan: DYto2L-4Jets\_MLL-50\_TuneCP5\_13p6TeV\_madgraphMLM-pythia8 *tt*:
  - DL: TTto2L2Nu\_TuneCP5\_13p6TeV\_powheg-pythia8
  - SL: TTtoLNu2Q\_TuneCP5\_13p6TeV\_powheg-pythia8
- Di-boson:
  - WZ: WZto2L2Q\_TuneCP5\_13p6TeV\_powheg-pythia8
  - WW: WWto2L2Nu\_TuneCP5\_13p6TeV\_powheg-pythia8
  - ZZ: ZZto2L2Nu\_TuneCP5\_13p6TeV\_powheg-pythia ZZto2L2Q\_TuneCP5\_13p6TeV\_powheg-pythia8
- W+jets: WtoLNu-4Jets\_TuneCP5\_13p6TeV\_madgraphMLM-pythia8

## MC normalization and cut scheme

- genWeight applied for generator level nominal weights.
- Total evens is normalized to the luminosity before preselection:

 $w_{lumi} = \frac{\text{lumi} \times \text{cross-section}}{N(\text{MC events})}$ , where  $N(\text{MC events}) = \sum \text{genWeight}$ 

The genWeight distribution for each MC dataset is checked as well.

| <ul> <li>Cross-section:</li> </ul> |                       | Cross-section /pb | Additional branching ratio                               |
|------------------------------------|-----------------------|-------------------|----------------------------------------------------------|
|                                    | Drell-Yan 2L          | 6221.3            |                                                          |
|                                    | $tar{t}$ DL           | 96.9              |                                                          |
| Cross-section from AN2022_103      | tī SL                 | 404.0             |                                                          |
|                                    | $W \rightarrow l \nu$ | 63199.9           |                                                          |
| Additional branching               | WW                    | 173.4             | $W \rightarrow l\nu$ : 21.75%                            |
| ratio from PDG                     | WZ                    | 54.3              | $W \rightarrow qq$ : 67.41%, $Z \rightarrow ll$ : 6.729% |
|                                    | ZZ                    | 16.7              | $Z  ightarrow qq$ : 69.91%, $Z  ightarrow \nu \nu$ : 20% |

# MC Luminosity scaling Run2023D

|                       |              |        | $\sigma \times BR$ | Events   |          |            | Stats eff Expected count lumi |          | GenWeight lumi Stats eff lumi / |                           | Count eff lumi / |                  |
|-----------------------|--------------|--------|--------------------|----------|----------|------------|-------------------------------|----------|---------------------------------|---------------------------|------------------|------------------|
| channel               | $\sigma$ /pb | BR     | /pb                | count    | $\sum w$ | $\sum w^2$ | events                        | events   | weight                          | weight                    | fb <sup>-1</sup> | fb <sup>-1</sup> |
| Drell-Yan 2L          | 6221.3       | -      | 6221.3             | 6.90E+07 | 9.11E+11 | 1.20E+16   | 6.90E+07                      | 5.88E+07 | 8.52E-01                        | 6.46E-05                  | 11.10            | 11.10            |
| t <del>Ī</del> DL     | 921          | 10.50% | 96.71              | 2.46E+07 | 1.98E+09 | 1.62E+11   | 2.43E+07                      | 9.14E+05 | 3.71E-02                        | 4.61E-04                  | 250.78           | 254.89           |
| t <del>Ī</del> SL     | 921          | 45.70% | 420.9              | 8.21E+07 | 2.74E+10 | 9.32E+12   | 8.07E+07                      | 3.98E+06 | 4.85E-02                        | 1.45E-04 191.8            |                  | 194.96           |
| $W \rightarrow l \nu$ |              | 21.34% | 63199.9            | 9.43E+07 | 1.19E+13 | 1.50E+18   | 9.43E+07                      | 5.97E+08 | 6.33E+00                        | 5.02E-05                  | 1.49             | 1.49             |
| WW                    | 116.8        | 4.55%  | 5.32               | 6.39E+06 | 7.53E+07 | 8.88E+08   | 6.39E+06                      | 5.03E+04 | 7.87E-03                        | 6.67E-04                  | 1200.87          | 1201.35          |
| WZ                    | 54.3         | 4.54%  | 2.46               | 4.27E+06 | 3.23E+07 | 2.45E+08   | 4.26E+06                      | 2.33E+04 | 5.46E-03                        | 7.21E-04                  | 1728.80          | 1732.40          |
| $ZZ \rightarrow 2l2q$ | 16.7         | 9.41%  | 1.57               | 1.49E+07 | 1.01E+08 | 6.96E+08   | 1.47E+07                      | 1.48E+04 | 9.96E-04                        | 1.47E-04                  | 9371.60          | 9487.55          |
| ZZ  ightarrow 2l2  u  | 16.7         | 2.69%  | 0.45               | 1.49E+07 | 1.54E+07 | 1.59E+07   | 1.49E+07                      | 4.25E+03 | 2.85E-04                        | 2.76E-04                  | 33069.23         | 33217.11         |
|                       |              |        |                    | Direct   |          |            | Compute                       |          |                                 | w <sub>lumi</sub> Applied | 1                |                  |
|                       |              |        |                    | count    |          |            | from weig                     | ht       |                                 | to events                 |                  |                  |

- Red values are taken from AN2022\_103 (Run 3  $t\bar{t}$  cross-section measurement note).
- $t\bar{t}$  cross-section 921 is @NNLO, in the plots in these slides use XS\*BR DL 96.6 pb, SL 404.0 pb
- *WW* cross-section 116.8 is @NNLO, in the plots in these slides use Pythia8 computed XS 173.4 pb.
- Decay branching ratio in third column all taken from PDG2023:
  - *tt*<sup>¯</sup>: SL 45.7%, DL 10.5%
  - $W \rightarrow qq: 67.41\%, Z \rightarrow ll: 6.729\%, Z \rightarrow qq: 69.91\%, Z \rightarrow \nu\nu: 20\%$
- Statistical effective events =  $(\sum w)^2 / \sum (w^2)$ , w is genWeight branch.
- Expected events = cross-section \* branching ratio / luminosity (9.451  $fb^{-1}$  )
- Effective luminosity = number of events / (cross-section \* branching ratio )

## **XSDB** values

- The cross-section values of MC samples from <u>XSDB</u> are not accurate enough, providing the under-estimation for MC samples.
- This shows the importance of using the cross-section @NNLO.

|                       | XSDB value/pb | Branching ratio |
|-----------------------|---------------|-----------------|
| Drell-Yan 2L          | 5467          |                 |
| $tar{t}$ DL           | 762.1         | 10.5%           |
| t t̄ SL               | 762.1         | 45.7%           |
| $W \rightarrow l \nu$ | 55390         |                 |
| WW                    | 80.23         |                 |
| WZ                    | 29.1          |                 |
| ZZ                    | 12.75         |                 |
| WWW                   | 0.2328        |                 |
| WWZ                   | 0.1851        |                 |
| WZZ                   | 0.06206       |                 |
| ZZZ                   | 0.01591       |                 |



8

### V15 Nano?

- This check uses V12 Nano following the Run 3 Pdmv twiki recommendation.
- V15 Nano mentioned in the CMS week.
- The PPD group <u>report</u> shows NanoAODv15 MC and reReco data ready next year:

|                      | dma   | ap o    | f 22    | 2, 23  | 3 an    | d 24  | 4 D/   | ATA    | and     | MC     | Pro | duc | Nov.<br>tior | . 2024 |
|----------------------|-------|---------|---------|--------|---------|-------|--------|--------|---------|--------|-----|-----|--------------|--------|
| 2024                 | Sep   | 0ct     | Νον     | Dec    | 2025    | Jan   | Feb    | Mar    | Apr     | May    | Jun | Jul | Aug          | Sep    |
| 2022/2023 p          | in Na | noA0Dv1 | 15 ; 14 | _0_X ( | AOD/SIM | ) and | 15_0_X | (MiniA | OD+Nano | AODv15 | )   |     |              |        |
| 22/23 Full<br>ReRECO |       |         |         |        |         |       |        |        |         |        |     |     |              |        |
| 22/23 PAG MC         |       |         |         |        |         |       |        |        |         |        |     |     |              |        |
| 22/23 SF             |       |         |         |        |         |       |        |        |         |        | >   |     |              |        |

- 2022 and 2023:
  - MC Campaigns: RunIII2022Summer24 and RunIII2023Summer24
    - Ideal detector (no BPix, no EE+)
    - ECAL PF Calib ongoing, PFHC to follow
    - Planned to be launched by December;
  - Data Reprocessing:
    - Pending ECAL PF, PFHC (same as above)
  - Preparations: [gitlab]

# Muon and event preselection

- Good Muon requirement:
  - Tight ID
  - Tight Iso (*I*<sub>0.4</sub> < 0.15)
  - Kinematic cut:  $p_T > 35 {\rm GeV}$  ,  $|\eta| < 2.4$
- Events required:
  - **Di-Muon**: Select only events with exactly 2 good Muons.
  - Leading and subleading muon picked in  $p_T$  descending order.
  - **Multi-Muon** is also studied later, where requiring more than 2 good Muons.

# Di-muon channel $m_{\mu\mu}$ data-MC comparison

 $m_{\mu\mu}$  of data & MC

Zoom-in



- W+jet and  $t\bar{t}$  SL contribution very low, ignore in later plots.
- Missing QCD contribution in the low mass region.
- Zoom-in plot shows clearly the  $m_{\mu\mu}$  shift between data and MC.

#### Leading muon kinematic variables



- Difference exists in  $p_T$
- Good matching in  $\phi$  and  $\eta$ .
- Might be solved by Rochester momentum scale correction.

#### Subeading muon kinematic variables



• Similar behavior to the leading Muon.



- Drell-Yan and W+jets genWeight are all positive, with small variations.
- Diboson and  $t\bar{t}$  have a small number of events with negative weight.

### **Electron selection**

- Good Electron (positron) requirement:
  - Tight cut-based ID
  - Kinematic cut:  $p_T > 35 \text{GeV}$ ,  $|\eta| < 2.4$
  - Exclude barrel-endcap transition region:  $|\eta_{SC}| < 1.442$  or  $|\eta_{SC}| > 1.566$ 
    - Super-Cluster  $\eta_{SC}$  by  $\eta + \Delta \eta_{SC}$
- Also, first look at the region with exact 2 good electrons in  $p_{T}$  descending order.

#### **Di-electron channel**

#### $m_{ee}$ of data & MC



#### Zoom-in



• The issue of Z peak shift is even stronger in the *ee* channel.

#### Leading electron kinematic variables



- The similar  $p_T$  shifting as di-Muon.
- Good matching in  $\phi$ .
- $\eta$  has the impact of maybe electron  $\eta$  selection, so it might need scale factors here.

#### Subleading electron kinematic variables



• Also behavior similar to the leading electron.

# Multiple leptons

- Multi-muon using the Muon0 and Muon1 datasets.
- Multi-electron using the EGamma0 and EGamma1 datasets.
- Require selected "GoodMuon" or "GoodElectron" at least 3.
- Replace the Diboson samples for multiple leptons contribution:
  - WZ\_TuneCP5\_13p6TeV\_pythia8
  - ZZ\_TuneCP5\_13p6TeV\_pythia8
  - WW\_TuneCP5\_13p6TeV\_pythia8
- These samples have relatively low statistics and thus are not used for di-lepton region comparison.

#### Multi-muon data-MC comparison



- Data exceeds MC contribution.
- Mis-identified lepton not added, which should also have significant contribution.

#### Multi-electron data-MC comparison



• The similar gap as in the multi-Muon scenario.

# Summary

- The data-MC comparison in di-Muon and di-Electron regions showed a shift in  $m_{\mu\mu}$  or  $m_{ee}$  peaks.
- The lepton  $p_T$  has a shift correspondingly. The lepton  $\eta$  and Muon  $\phi$  matching is good. The electron  $\phi$  matching has a overshooting at the transition region.
- The multi-Muon and multi-Electron regions showed a gap between data and MC, which might be contribution from misidentified leptons.